磁共振影像深度学习在精神分裂症诊断中的应用综述

来源 :中国图象图形学报 | 被引量 : 22次 | 上传用户:lan_lang_
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
精神分裂症是一种大脑存在结构和功能异常的严重精神疾病,目前尚无十分有效的诊疗手段。许多研究者尝试采用基于磁共振影像的机器学习方法辅助诊断精神分裂症。深度学习由于其强大的特征表示能力,在医学影像等领域得到了广泛的应用,表现出比传统机器学习方法更优异的性能。目前已有论文对深度学习在医学影像领域内的应用进行了详细的总结和分析,却很少有论文对其在具体某一疾病(例如精神分裂症)诊断中的应用进行系统的梳理和总结。因此,本文主要关注深度学习在基于磁共振影像的精神分裂症诊断中的应用。首先介绍了基于磁共振影像的精神分
其他文献
随着成像技术的成熟,临床医生及实验人员能获得同时带有时间和空间信息的4D(3D+时间)数据,用于纵向研究疾病变化情况。由于缺乏合适的处理算法,导致明显的信息丢失。为解决这一问题,一些研究发挥人工智能在海量数据处理上的优势进行纵向医学图像分析,研究目标随时间的动态变化。本文对4D时空纵向分析在生物学运动目标追踪、医学影像分割、肿瘤生长预测、血管动力学和神经科学等应用进行综述,重点探讨了人工智能技术与
医学影像的诊断是许多临床决策的基础,而医学影像的智能分析是医疗人工智能的重要组成部分。与此同时,随着越来越多3D空间传感器的兴起和普及,3D计算机视觉正变得越发重要。本文关注医学影像分析和3D计算机的交叉领域,即医学3D计算机视觉或医学3D视觉。本文将医学3D计算机视觉系统划分为任务、数据和表征3个层面,并结合最新文献呈现这3个层面的研究进展。在任务层面,介绍医学3D计算机视觉中的分类、分割、检测
2020年3月,世界卫生组织(World Health Organization, WHO)宣布新型冠状病毒肺炎(corona virus disease 2019,COVID-19)为世界大流行病,疫情的爆发给世界各地医疗系统带来巨大压力。现有的COVID-19诊断标准是核酸检测阳性,然而核酸检测假阴性率高达17%~25.5%,为避免漏诊,需要采用基于影像学的AI诊断方法筛查大量疑似病例,扼制疾
目的新冠肺炎(COVID-19)已经成为全球大流行疾病,在全球范围数百万人确诊。基于计算机断层扫描(computed tomography,CT)数据的影像学分析是临床诊断的重要手段。为了实现快速高效高精度地检测,提出了一种超级计算支撑的新冠肺炎CT影像综合分析辅助系统构建方法。方法系统整个处理流程依次包括输入处理模块、预处理模块、影像学分析子系统和人工智能(artifiaial intellig