论文部分内容阅读
传统的树种分类识别方法未进行最大池化操作,导致树种分类识别精度差.现引入分形维度进行林业遥感图像树种分类识别.通过ROI区域截取获取遥感树种图像,利用直方图均衡化方法进行原始图像预处理,以便获得高质量与清晰度的林业遥感图像;通过分形维度理论分析提取的林业遥感图像纹理特征,完成卷积神经网络模型的优化构建;将林业遥感图像纹理特征输入卷积层,经卷积层的卷积操作并计算特征数据,池化池通过最大池化操作卷积层输出的数据;通过Relu激活函数对林业遥感图像树种纹理特征进行深度分析,利用Softmax分类器实现树种分类识别.实验结果表明,上述方法预处理后的遥感图像质量高,且林业遥感图像树种分类识别的效率高,分类识别的时间低至35.7ms,分类识别的准确率高达95.62%.