论文部分内容阅读
针对一类单输入单输出非线性时滞系统,提出了一种自适应神经网络迭代学习控制方案,神经网络用来逼近未知非线性函数和未知非线性时滞函数,放宽了传统迭代学习控制对非线性函数和非线性时滞函数的限制,拓展了迭代学习控制的应用范围.采用Lyapunov—Krasovskii函数和利用反演(Backstepping)技术设计神经网络学习律和控制律,基于Lyapunov稳定性理论,证明了闭环系统所有信号半全局一致最终有界,通过调节设计参数可以实现对目标轨线任意精度的跟踪.