论文部分内容阅读
针对复杂室内环境下移动机器人的路径规划问题,提出一种面向多目标同时优化的改进萤火虫算法;该算法利用栅格地图对机器人作业环境进行建模,将Pareto支配关系引入到萤火虫个体的亮度评价过程,构建精英库保留算法迭代过程中的Pareto非支配解,采用自适应网格划分策略维护种群的多样性;以路径长度、路径安全性和路径平滑度为目标进行运动路径的搜索与优化。仿真结果表明,与经典的带精英策略的非支配排序遗传算法相比,面向多目标同时优化的改进萤火虫算法求得Pareto非支配解集更优越。