论文部分内容阅读
We present a tunable resonator consisting of a colossal magnetoresistant cross in which a smaller gold cross is embedded. Simulations show the resonance frequencies of the resonator move into the infrared regime when there is a change in the intensity of the external magnetic field applied to the resonator. The source of the tunability is the variance in the colossal magnetoresistance in the resonator when the intensity of the magnetic field changes, which accordingly leads to a shift in the resonance frequency. Such a method offers a new way to achieve tunability, which has potential applications in controllable photoelectric elements.
We present a tunable resonator consisting of a colossal magnetoresistant cross in which a smaller gold cross is embedded.. Simulations show the resonance frequencies of the resonator move into the infrared regime when there is a change in the intensity of the external magnetic field applied to the resonator. The source of the tunability is the variance in the colossal magnetoresistance in the resonator when the intensity of the magnetic field changes, which accordingly leads to a shift in the resonance frequency. applications in controllable