论文部分内容阅读
为解决粒子滤波(PF)固有的退化现象及因简单重采样引起的粒子匮乏问题,采用扩展卡尔曼滤波(EKF)来优选PF的重要性分布,并对重采样方法进行改进。通过理论分析及针对全球定位系统(GPS)的计算机仿真,对比扩展卡尔曼滤波(EKF)、扩展卡尔曼粒子滤波(EKPF)以及改进的EKPF算法来实现导航定位的定位估计精度与效率,分析在不同条件状况下的最佳非线性滤波算法。实验结果表明,与其它方法相比,该算法在高动态、高机动状态下性能得到了明显的改善。