Bayesian compressive principal component analysis

来源 :计算机科学前沿 | 被引量 : 0次 | 上传用户:dswwldsw
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Principal component analysis (PCA) is a widely used method for multivariate data analysis that projects the original high-dimensional data onto a low-dimensional subspace with maximum variance.However,in practice,we would be more likely to obtain a few compressed sensing (CS) measurements than the complete high-dimensional data due to the high cost of data acquisition and storage.In this paper,we propose a novel Bayesian algorithm for learning the solutions of PCA for the original data just from these CS measurements.To this end,we utilize a generative latent variable model incorporated with a structure prior to model both sparsity of the original data and effective dimensionality of the latent space.The proposed algorithm enjoys two important advantages: 1) The effective dimensionality of the latent space can be determined automatically with no need to be pre-specified;2) The sparsity modeling makes us unnecessary to employ multiple measurement matrices to maintain the original data space but a single one,thus being storage efficient.Experimental results on synthetic and realworld datasets show that the proposed algorithm can accurately learn the solutions of PCA for the original data,which can in turn be applied in reconstruction task with favorable results.
其他文献
With the fast development of software defined network (SDN),numerous researches have been conducted for maximizing the performance of SDN.Currently,flow tables
各省、自治区、直辖市人民政府,国务院各部委、各直属机构:rn城镇老旧小区改造是重大民生工程和发展工程,对满足人民群众美好生活需要、推动惠民生扩内需、推进城市更新和开
期刊
本文针对中国岩彩画创作的当代性及发展走向进行了研究.采用文献研究等方法首先分析了中国当代岩彩画创作的观念性、抒情性、平面性和装饰性的特性,并具体研究了如何通过创新
近年来,施工现场工作的安全性已经得以提升,但由于影响因素复杂多变,施工现场在安全管理方面仍然存在一些漏洞,并威胁到工人的生命安全、家庭“支柱”和建筑企业的利益.因此,