论文部分内容阅读
为提高电力系统低频振荡现象的实时监测水平,提出采用一种基于自回归滑动平均模型的两段加权递推最小二乘算法进行低频振荡模式辨识,并通过估计ARMA谱的方法以提取低频振荡的主导模式。该改进算法先采用加权递推最小二乘算法拟合高阶AR模型单独得到白噪声估值,再将该估值用于常规加权递推最小二乘算法中,提高了算法参数辨识的精度和收敛速度。lqew—England39节点系统的时域仿真测试验证了该改进算法对低频振荡模式辨识的有效性,并通过与常规加权递推最小二乘算法辨识效果的比较验证了该改进算法对低频振荡模式的辨识具有更好