论文部分内容阅读
针对高维海量数据集离群点挖掘存在"维数灾难"的问题,提出了基于信息论的高维海量数据的离群点挖掘算法。该算法采用属性选择,去除冗余属性降维。利用信息熵作为离群点判断的度量标准,消除距离和密度量纲的弊端。在真实数据集上的实验结果表明,算法对高维海量数据离群点挖掘是有效可行的,其效率和精度得到了明显提高。