基于BiGRU深度神经网络的心肌梗死检测

来源 :计算机应用与软件 | 被引量 : 0次 | 上传用户:handan0918
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对目前智能医疗诊断领域的研究现状,结合心电信号的时序性和多导联关联性特点,为降低心肌梗死疾病的误诊率,提出一种基于双向门控循环单元神经网络(Bidirectional Gated Recurrent Unit, BiGRU)和多导联心电图(electrocardiogram, ECG)信号的深度神经网络学习算法。对原始心电信号进行去噪处理,分割成心拍序列;将心拍序列送入深度神经网络训练模型学习分类;采用Physikalisch-Technische Bundesanstalt(PTB)心电数据库验
其他文献
《经济政治与社会》是中等职业学校德育必修课的核心课程。《价格和价值规律》是本册书第一单元第一课中的内容,主要介绍经济常识的入门知识。经济是政治、文化、社会的基础,作
随着信息技术的发展,文本信息数据正在爆炸式增长,从众多的文本数据中有效地获取有用信息是一个值得研究的问题。针对该任务提出基于层次特征提取的文本分类模型,考虑文本中句子级别的语义内容以及文本级别的语义内容,依次使用两种神经网络模型建模句子级的语义内容和文本级的语义内容,从而得到关于文本的全面特征,进而基于此特征对文本进行分类。实验结果表明,该方法能够更加准确地提取文本的特征,具有更高的分类准确度。