论文部分内容阅读
以10 792例冠心病调查数据为例,依据禁忌搜索算法构建冠心病患病及其影响因素的贝叶斯网络模型,用极大似然估计法计算网络各节点的条件概率,并分析冠心病的影响因素,评价贝叶斯网络模型相对于传统的logistic回归模型在疾病影响因素分析中的优劣,探讨贝叶斯网络模型在临床研究中的适用性。分析结果表明,贝叶斯网络可以揭示冠心病各影响因素间的关联及与冠心病的关系,比logistic回归分析更符合实际理论,表明贝叶斯网络模型在冠心病影响因素分析中具有较好的适用性及应用前景。