结合通道注意力的特征融合多人姿态估计算法

来源 :小型微型计算机系统 | 被引量 : 1次 | 上传用户:tushudasha
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了提高二维复杂场景下多人姿态估计准确度和速度,提出了一种Mobile-YOLOv3模型与多尺度特征融合全卷积网络相结合的自顶向下多人姿态估计方法.利用深度可分离卷积改进YOLOv3网络以作为高效的人体目标检测器.针对网络特征下采样过程中上层高分辨率信息不断遗失问题,在经典U型网络结构中嵌入多尺度特征融合模块,从而使网络中的低尺度特征也包含高分辨率信息,并在特征融合模块中引入通道注意力机制,进一步突出多尺度融合特征图的关键通道信息.试验结果表明:相比于堆叠沙漏网络(Stacked Hourglass
其他文献
针对具有控制量约束和可视性约束的六自由度机器人的视觉伺服系统,研究了基于图像空间局部模型的预测控制器的设计问题.首先对特征点的投影图像的运动学方程进行离散化,得到
针对传统的流行排序显著性检测算法存在的问题,本文提出了改进背景先验和前景先验的显著性检测.首先计算图像的凸包,并将图像分割成不同尺度的超像素;然后以凸包区域之外的超像素为背景种子,结合多尺度下图像的多种底层特征得到最终的背景显著图;第三,以凸包区域之内的超像素为前景种子,结合多尺度下图像的多种底层特征得到最终的前景显著图;第四,融合最终的背景显著图和最终的前景显著图得到弱显著图,通过多核增强(MK
绝缘子图像中存在的噪声对提取绝缘子细节纹理特征具有较大影响,单个特征描述子不能描述绝缘子的更多细节纹理特征,而提取到绝缘子细节纹理特征的多少直接影响了绝缘子缺陷检测的精度和速度.针对以上问题,提出改进快速导向滤波算法和融合PHOG与BOW-SURF特征来实现绝缘子缺陷的精确检测.首先,采用改进的快速导向滤波算法对接触网绝缘子原始图像进行滤波;然后,提取绝缘子滤波后图像的PHOG和BOW-SURF特
在拥有海量数据和强大计算能力的人工智能时代,音频场景分类成为了场景理解的重要研究内容之一.针对音频场景分类建模困难和精确率不高的问题,本文提出一种基于卷积神经网络