论文部分内容阅读
题 实数x、y满足x2 -2xy + y2 -3x -3y +1 2 =0 ,则xy的最小值是 ( )。(A) 1 2 (B) 4 51 6 (C) 2 14 (D)不存在。解法 1 由x2 -2xy + y2 -3x -3y + 1 2 =0 ,得xy =x2 + y2 -3x -3y+ 1 22=(x -32 ) 2 + ( y -32 ) 2 + 2 122 ≥2 14 ,
The real number x, y satisfies x2 -2xy + y2 -3x -3y +1 2 =0, then the minimum value of xy is (). (A) 1 2 (B) 4 51 6 (C) 2 14 (D) does not exist. Solution 1 From x2 -2xy + y2 -3x -3y + 1 2 =0, get xy =x2 + y2 -3x -3y+ 1 22=(x -32 ) 2 + ( y -32 ) 2 + 2 122 ≥2 14 ,