论文部分内容阅读
近红外光谱是一种快速、无损的定量分析工具,现如今已广泛的应用在各个行业中。近红外光谱分析技术应用的关键就在于如何建立一个有效而又精确的模型。目前常用的定量分析方法大多为浅层模型,深度信念网络(DBN)是一种基于概率的深层模型,可以自动学习输入的有效特征表示,且只要设置最后隐层输出节点数低于输入光谱维度,在对光谱数据完成特征提取的同时即可实现降维。对于近红外光谱样本量大、变量多、维度高等问题,提出一种基于深度信念网络的近红外光谱建模方法,定量分析物性浓度。该方法以近红外光谱数据作为输入信号,首先对多层受限玻