论文部分内容阅读
本文研究一类二阶齐次线性微分方程f"+A_1(z)e~(P(z))f'+A_0(z)e~(Q(z))f=0,解的增长性,其中P(z)=az~n,Q(z)=bz~n,ab≠0,a=cb(c〉1),A_j(z)(j=0,1)是非零多项式,证明了该方程的每个非零解满足σ(f)=∞并且σ_2(f)=n.