论文部分内容阅读
不断提高空间分辨率、数据采集速度以及实现材料性质的成像,一直以来就是原子力显微术的发展目标.目前,最可能实现这一目标的手段是近些年发展的多频原子力显微术.多频原子力显微术,即利用多频率激励和/或多频率探测微悬臂的振动信号来研究样品纳米物性的一大类AFM技术.它可以实现针尖与样品间作用非线性信息的提取,在组分探测灵敏度、时间和空间成像分辨率等方面展现了巨大的优势.文中综述了多频原子力显微术所包含的不同实现方法的基本原理,并介绍了它们在高分辨成像、纳米力学、材料、生物等方面的前沿应用实例.此外,为探索多频原子力显微术,我们提出了一种特殊的高次谐振型石英音叉微悬臂模型.最后,文章展望了多频原子力显微术的下一步技术发展和应用研究.
The continuous improvement of spatial resolution, data acquisition speed, and imaging of material properties have long been the goal of AFM, and the most likely way to accomplish this is currently multi-frequency AFM. Multi-frequency atomic force microscopy (AFM) is a generalized AFM technique that uses multi-frequency excitation and / or multi-frequency detection of micro-cantilever vibration signals to study the nano-physical properties of samples. It can extract non-linear information from the tip to the sample. Component detection sensitivity, time and space imaging resolution, etc. The basic principles of different implementation methods in multi-frequency atomic force microscopy are summarized and their applications in high resolution imaging, nanomechanics, Materials, biology, etc. In addition, in order to explore the multi-frequency atomic force microscopy, we propose a special high-resonance-type quartz tuning fork micro-cantilever model.Finally, the article looks forward to the multi-frequency atomic force microscopy Next technical development and applied research.