,The Cooperative Activities of CSLD2, CSLD3, and CSLD5 Are Required for Normal Arabidopsis Developme

来源 :分子植物(英文版) | 被引量 : 0次 | 上传用户:vickyfucandy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Glycosyltransferases of the Cellulose Synthase Like D (CSLD) subfamily have been reported to be involved in tip growth and stem development in Arabidopsis.The csld2 and csld3 mutants are root hair defective and the csld5 mutant has reduced stem growth.In this study,we produced double and triple knockout mutants of CSLD2,CSLD3,and CSLD5.Unlike the single mutants and the csld2/csld3 double mutant,the csld2/csld5,csld3/csld5,and csld2/csld3/csld5 mutants were dwarfed and showed severely reduced viability.This demonstrates that the cooperative activities of CSLD2,CSLD3,and CSLD5 are required for normal Arabidopsis development,and that they are involved in important processes besides the specialized role in tip growth.The mutant phenotypes indicate that CSLD2 and CSLD3 have overlapping functions with CSLD5 in early plant development,whereas the CSLD2 and CSLD3 proteins are non-redundant.To determine the biochemical function of CSLD proteins,we used transient expression in tobacco leaves.Microsomes containing heterologously expressed CSLD5 transferred mannose from GDP-mannose onto endogenous acceptors.The same activity was detected when CSLD2 and CSLD3 were co-expressed but not when they were expressed separately.With monosaccharides as exogenous acceptors,microsomal preparations from CSLD5-expressing plants mediated the transfer of mannose from GDP-mannose onto mannose.These results were supported by immunodetection studies that showed reduced levels of a mannan epitope in the cell walls of stem interfascicular fibers and xvlem vessels of the csld2/csld3/csld5 mutant.
其他文献
学位
该文在野外调查和室内分析的基础上,以农业持续发展为原则,应用地理信息系统和数学方法对三峡库区的王家桥小流域的土地进行了评价.
学位
Cell wall hemicellulosic polysaccharides are structurally complex and diverse.Knowledge about the synthesisof cell wall hemicelluloses and their biological role
学位
学位
Radicle emergence and reserves mobilization are two distinct programmes that are thought to control germination. Both programs are influenced by abscissic acid