论文部分内容阅读
穆斯堡尔效应是原子核对 r 光子的一种无反冲共振吸收效应,因其对 r 射线能量的细微变化极其灵敏(10~(-13)eV)故此可用这种共振吸收效应来探测共振原子核附近的物理化学环境的细微变化,从而获得原子、分子结构方面的信息.自1957年德国青年物理学家穆斯堡尔(R·L·M(?)ssbauer)发现此效应以来,基于该效应迅速发展起来了一门边缘学科——穆斯堡尔谱学,其在物理、化学、矿物、地质、冶金、生物、医学、考古以及诸多的材料科学研究领域得到了极其广泛的应用.1960年 Kistner 和 Sunyar 首次用穆斯堡尔谱方法(下文简称 MS 方法)测定了α—Fe_2O_3的四极裂距,并准确地测出了α—Fe_2O_3的化学移位(即同质异能移位),人们很快注意到,许多在化学研究中具有重要意义的微观信息(如氧化态、电子组态、化学键性质、配位数等)都
The Mössbauer effect is a recoilless resonance absorption effect of r photons by atomic nuclei because it is extremely sensitive to subtle changes in r-ray energies (10-13 (eV)), so this resonance absorption effect can be used to detect resonance The subtle changes in the physico-chemical environment around the nucleus have led to the discovery of atomic and molecular structure information. Since the discovery of this effect by the young German physicist RL Mossbauer in 1957, The effect quickly developed as a marginal subject - Mossbauer spectroscopy, which has gained a very wide range of applications in the fields of physics, chemistry, minerals, geology, metallurgy, biology, medicine, archeology and many other materials science studies.160 For the first time, Kistner and Sunyar measured the quadrupole crack of α-Fe_2O_3 by Mossbauer method (hereinafter referred to as MS method) and accurately measured the chemical shift of α-Fe_2O_3 (ie, ), It is quickly noticed that many microscopic information (such as oxidation states, electron states, chemical bond properties, coordination numbers, etc.) that are of significance in chemical research