论文部分内容阅读
主要证明了如下两个定理:(1)假设Ⅳ是有限群G的一个正规子群使得G/Np-幂零群.如果N的Sylow P-子群P与G的p-幂零剩余G^p-N 之交P∩中每个p阶或4阶(当P=2的时候)元素均含于Z(NG(P))中,则G是p-幂零群.(2)假设H是有限群G的一个正规子群使得G/H是幂零群.如果对于|H|的每个素因数P和H的Sylow P-子群P,P与G的p-幂零剩余G^p-N 之交G^p-N 中每个P阶或4阶元素x都是NG(P) 的一个弱左Engle元素,则G是幂零群.