论文部分内容阅读
单程波动传播在(x,t)域可用积分—微分方程表示,并可用来做叠加数据的偏移,其中最关键的是在频率域中用有理函数积分来取代相移平方根,并在空间—时间域解释其结果表达式。采用有限求和近似积分可得许多实用的近似结果。本文的 Claerbout15°方程为最低阶方程,其它方程为各种高阶方程。根据 Chebychev 准则导出的最优 m 阶求积公式采用的是二阶近似,其计算时间比用15°方程长20%,但倾角超过50°仍很精确。
The one-way wave propagation in the (x, t) domain can be expressed by the integral-differential equation and can be used to make the offset of the superposed data. The key point is to replace the square root of the phase shift with rational function integral in the frequency domain, The time domain explains its result expression. There are many practical approximations that result from using finite sum approximations. The Claerbout15 ° equation in this paper is the lowest order equation, and the other equations are all higher order equations. The optimal m-th order quadrature formula derived from the Chebychev’s criterion uses a second-order approximation, which is 20% longer than the 15 ° equation but still accurate over 50 °.