论文部分内容阅读
Friction is one of the main factors that affect the positioning accuracy of motion system. Friction compensation based on friction model is usually adopted to eliminate the nonlinear effect of friction. This paper presents a proportional-plus-derivative (PD) feedback controller with a friction compensator based on LuGre friction model. We also design a state observer to observe the unknown state of LuGre friction model, and adopt a parameter adaptive law and off-line approximation to estimate the parameters of LuGre friction model. Comparative experiments are carried out among our proposed controller, PD controller with friction compensation based on classical friction model, and PD controller without friction compensation. Experimental results demonstrate that our proposed controller can achieve better performance, especially higher positioning accuracy.
Friction is one of the main factors that affect the positioning accuracy of motion system. Friction compensation based on friction model is usually adopted to eliminate the nonlinear effect of friction. This paper presents a proportional-plus-derivative (PD) feedback controller with a friction compensator based on LuGre friction model. We also design a state observer to observe the unknown state of LuGre friction model, and adopt a parameter adaptive law and off-line approximation to estimate the parameters of LuGre friction model. proposed controller, PD controller with friction compensation based on classical friction model, and PD controller without friction compensation. Experimental results demonstrate that our proposed controller can achieve better performance, especially higher positioning accuracy.