论文部分内容阅读
粒子滤波算法是一种适用于非线性非正态约束的统计滤波算法.针对粒子滤波存在退化现象,从围绕增加粒子的多样性和重要性分布函数的选择出发,提出了一种改进的无迹粒子滤波算法.该算法是利用无迹卡尔曼滤波产生的近似高斯分布作为重要性密度函数,在每次迭代中,结合马尔科夫链蒙特卡洛使粒子能够移动到不同地方,从而可以避免贫化现象.将这种算法应用到GPS/DR组合导航系统中,仿真结果证明了采用改进的无迹粒子滤波方法能达到很好的跟踪效果.