论文部分内容阅读
针对准则值为二元语义、准则权系数完全未知的风险型多准则决策问题,提出一种基于二元语义前景关联分析的决策方法.该方法通过确定二元语义正、负理想方案,计算二元语义关联系数;分别以正、负理想方案为参考点,计算各准则下各方案的二元语义前景值,构建前景决策矩阵;进而依据各准则的灰色均值关联度确定准则权系数,通过二元语义相对前景关联度对方案进行排序.最后的实例分析表明了所提出方法的有效性.
Aiming at the risk-based multi-criteria decision making problem that the norm value is binary and the criterion weight is unknown, a decision-making method based on binary semantic foreground correlation analysis is proposed. By determining the positive and negative ideal of binary semantics, Meta-semantic correlation coefficient; Positive and negative ideal solutions as a reference point respectively, calculate the binary semantic foreground values of each scheme under each criterion and construct the foreground decision matrix; then determine the criterion weight coefficient according to the gray mean value of each criterion, Meta-semantic relative foreground relevance ranks the programs.The last example analysis shows the effectiveness of the proposed method.