论文部分内容阅读
序列最小优化(SMO)是一种常见的训练支持向量机(SVM)的算法,但在求解大规模问题时,它需要耗费大量的计算时间。文章提供SMO的一种并行实现方法。并行SMO是利用信息传递接口(MPI)开发的。首先将整个训练数据集分为多个小的子集,然后同时运行多个CPU处理器处理每一个分离的数据集。实验结果表明.当采用多处理器时,在Adult数据集上并行SMO有较大的加速比。