论文部分内容阅读
大部分基于浮动车GPS数据的速度估计模型仅适用于GPS数据采样时间间隔小、样本量空间分布密集的理想情况,无法准确计算样本量不足情况下的实时速度。根据浮动车GPS数据点在空间上的分布情况,提出组合三种速度估计模型,以最大限度地提高GPS数据利用率;考虑到GPS数据点在时间上分布不均,在GPS数据不足的情况下,结合神经网络预测和数据融合的技术,根据误差方差融合速度估计模型的测量值和神经网络拟合的预测值,以减少实时估计误差。选择广州市东风路作为测试实例,在高峰和平峰两种交通场景下比较了融合值、测量值和预测值的误