论文部分内容阅读
提出了一种新的适用于水质模型参数辨识的混沌粒子群优化(LCPSO)算法.与粒子群优化(PSO)算法相比,该算法将Logistic混沌搜索嵌入到PSO算法中,利用混沌变量产生初始粒群,并对子代部分粒子群体进行微小扰动,随着搜索过程的深入逐步调整扰动幅度,以克服PSO算法的早熟、易陷入局部极值等固有缺陷.采用标准测试函数,将该算法与遗传算法(GA)和PSO算法进行比较,证明了其收敛速度和寻优能力的优越性.采用实测水质数据,将LCPSO算法应用于具有一定工程价值和复杂程度的Dobbins-Camp BOD-DO