论文部分内容阅读
采用密度泛函理论(DFT)BHandHYLP方法,计算分析C^N^N配体,C^N^NPt(Ⅱ)(C^N^N=6-苯基-2,2’连吡啶)及N^C^NPt(Ⅱ)(N^C^N=1,3-二吡啶基-苯)配合物的极化率和二阶非线性光学(NLO)系数.结果表明形成金属配合物后二阶NLO系数明显增大,配合物2b的β值是配体Lb的11倍.增加副配体的共轭性及取代基接受电子的能力都可以提高配合物的二阶NLO系数.TD-BHandHLYP方法计算配合物的电子光谱与实验测定结果相吻合,配合物C^N^NPt(Ⅱ)和N^C^NPt(Ⅱ)的最大吸收波长是由不同的电子跃迁形式引起的,取代基对N^C^NPt(Ⅱ)配合物的最大吸收波长有一定影响,而对C^N^NPt(Ⅱ)配合物影响较小.
The density functional theory (DFT) BHandHYLP method was used to calculate the distributions of C ^ N ^ N ligands, C ^ N ^ NPt (Ⅱ) The polarizability and the second order nonlinear optical (NLO) coefficients of the complex of C ^ NPt (II) (N ^ C ^ N = 1,3-dipyridyl-benzene) NLO coefficient increased significantly, the complex β 2b value is 11 times the ligand Lb.And increase the conjugate ligand and the ability of substituents to accept electrons can improve the complex second-order NLO coefficient.TD-BHandHLYP method The calculated electron spectra of the complexes are in good agreement with the experimental results. The maximum absorption wavelengths of the complexes C ^ N ^ NPt (Ⅱ) and N ^ C ^ NPt (Ⅱ) are caused by different electronic transitions. The maximum absorption wavelength of ^ C ^ NPt (Ⅱ) complex has a certain influence, but has little effect on the complex of C ^ N ^ NPt (Ⅱ).