论文部分内容阅读
A coupled numerical method for the direct numerical simulation of particle-fluid systems is formulated and implemented,resolving an order of magnitude smaller than particle size.The particle motion is described by the time-driven hard-sphere model,while the hydrodynamic equations governing fluid flow are solved by the lattice Boltzmann method(LBM).Particle-fluid coupling is realized by an immersed boundary method(IBM),which considers the effect of boundary on surrounding fluid as a restoring force added to the governing equations of the fluid.The proposed scheme is validated in the classical flow-around-cylinder simulations,and preliminary application of this scheme to fluidization is reported,demonstrating it to be a promising computational strategy for better understanding complex behavior in particle-fluid systems.
A coupled numerical method for the direct numerical simulation of particle-fluid systems is formulated and implemented, resolving an order of magnitude smaller than particle size. The particle motion is described by the time-driven hard-sphere model, while the hydrodynamic equations governing fluid flow are solved by the lattice Boltzmann method (LBM). Particle-fluid coupling is realized by an immersed boundary method (IBM), which considers the effect of boundary on surrounding fluid as a restoring force added to the governing equations of the fluid. proposed scheme is validated in the classical flow-around-cylinder simulations, and preliminary application of this scheme to fluidization is reported, demonstrating it to be a promising computational strategy for better understanding complex behavior in particle-fluid systems.