论文部分内容阅读
                            
                            
                                复杂背景下,传统显著性检测方法经常遭遇检测结果不稳定和准确率低的问题。针对这些问题,提出一种基于贝叶斯框架融合深度信息的显著性检测方法。首先利用全局对比、局部对比和前景背景对比方法获取颜色显著图,并利用非均质中心-邻居差异的深度对比方法获取深度显著图。其次采用贝叶斯模型融合颜色显著图和深度显著图,获得输出显著图。实验结果表明,本文的方法能有效检测出复杂背景下的显著目标,并在公开的NLPR-RGBD数据集和NJU-DS400数据集上取得较高检测精确度。