【摘 要】
:
可靠的区域出行需求预测能够为交通资源的调度和规划提供合理有效的建议.但是,出行预测是一个非常具有挑战性的问题,面临海量的时空大数据建模问题,如何有效地提取时空大数据中的空间特征和时间特征,成为当前城市计算的研究热点.文中提出了一种基于3D卷积和编码-解码注意力机制的需求预测模型(3D Convolution and Encoder-Decoder Attention Demand Forecasting,3D-EDADF),用于同时预测城市区域的出行需求流入量和流出量.3D-EDADF模型首先利用3D卷积
【机 构】
:
西南交通大学计算机与人工智能学院 成都 611756;综合交通大数据应用技术国家工程实验室 成都 611756
论文部分内容阅读
可靠的区域出行需求预测能够为交通资源的调度和规划提供合理有效的建议.但是,出行预测是一个非常具有挑战性的问题,面临海量的时空大数据建模问题,如何有效地提取时空大数据中的空间特征和时间特征,成为当前城市计算的研究热点.文中提出了一种基于3D卷积和编码-解码注意力机制的需求预测模型(3D Convolution and Encoder-Decoder Attention Demand Forecasting,3D-EDADF),用于同时预测城市区域的出行需求流入量和流出量.3D-EDADF模型首先利用3D卷积来提取时空数据的时空相关性,然后使用LSTM编码解码来对时间依赖性进行捕获,并结合注意力机制来描述流入流出的差异性.3 D-EDADF模型对临近依赖性、日常依赖性和周期依赖性这3种时间依赖特征进行混合建模,然后将它们的多维特征进行加权融合得到最终的预测结果.采用真实的出行需求数据集进行了大量的实验,结果表明,与基准模型相比,3 D-EDADF模型的整体预测误差较低,具有较好的预测性能.
其他文献
自动化代码注释生成技术通过分析源代码的语义信息生成对应的自然语言描述文本,可以帮助开发人员更好地理解程序,降低软件维护的时间成本.大部分已有技术是基于递归神经网络(Recurrent Neural Network,RNN)的编码器和解码器神经网络实现的,但这种方法存在长期依赖问题,即在分析距离较远的代码块时,生成的注释信息的准确性不高.为此,文中提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)的自动化代码注释生成方法来缓解长期依赖问题,以生成更准确的注释信息.
合并流程变体模型能够快速地构建满足新需求的单一流程模型,对流程变体进行合并具有较大的实际应用价值,因此,文中提出了一种利用分组公平控制流结构的流程变体合并方法.首先,利用Petri网中的分组公平将流程变体分割为单个的变体片段;其次,提取出变体片段的控制流路径,并在此基础上构建其矩阵表现形式,进而将流程变体合并为单一的流程模型;最后,通过形式化证明验证合并后的流程模型可以捕获输入流程模型的所有行为,并且可以检测在合并模型中是否产生了不期望的行为.
程序的最坏执行路径是计算程序复杂度的一项重要指标,有助于发现系统可能存在的复杂性漏洞.近年来将符号执行应用于程序复杂度分析的研究取得了不小的进展,但现有方法存在通用性较差、分析时间较长的问题.文中提出一种面向最坏路径探测的进化算法——EvoWca,其核心思想是利用程序在较小输入规模下的已知最坏路径特征指导较大输入规模下初始路径集合的构建,然后模拟进化算法,对路径进行组合、突变和选择迭代,使得在搜索范围内探测到的最坏路径逼近于最坏时间复杂度对应的路径.基于该算法实现了一个用于程序复杂度分析的原型工具EvoW
通过对缺陷数据集进行挖掘,缺陷预测模型能够提前预测出被测软件中的缺陷模块,帮助测试人员实现更有针对性的测试,而普遍存在的数据集标签噪声会影响预测模型的性能.已有的特征选择方法很少对噪声可容忍性进行针对性设计,同时在主流的具有噪声容忍能力的特征选择框架中策略选取只能依靠经验手动执行,难以在软件工程实践中得到应用.鉴于此,文中提出一种噪声可容忍的软件缺陷预测特征选择方法NTFES(Noise Tolerable FEature Selection),即通过Bootstrap抽样技术生成多个自助样本集,在自助样
基于模型的安全性分析方法能够提高复杂安全关键系统的建模与分析能力.目前故障树被广泛应用于系统安全及可靠性分析中.故障树分析(Fault Tree Analysis,FTA)是一种自上而下的演绎式失效方法,根据故障树分析系统中不希望出现的状态,系统工程中可以尽早确定当前系统模型可能出现的问题并及时避免.面向一类安全关键性系统领域中的系统安全性建模语言AltaRica,基于其语义模型卫士转换系统(Guarded Transition Systems,GTS),设计了从平展化的GTS模型自动构造系统故障树的方法
在软件开发的过程中,开发人员在遇到编程困境时通常会检索合适的API来完成编程任务.情境信息和开发者画像在有效的API推荐中起着至关重要的作用,却在很大程度上被忽视了.因而文中提出了一种基于情境感知的API个性化推荐方法.该方法利用程序静态分析技术,对代码文件做抽象语法树解析,提取信息构建代码库,并对开发者API使用偏好建模.然后计算开发者当前查询语句与历史代码库中查询的语义相似度,检索出top-k个相似历史查询.最终利用查询语句信息、方法名信息、情境信息以及开发者API使用偏好信息对API进行重排序并推荐
随着软件项目规模的扩大以及软件复杂性的增加,缺陷修复的难度越来越大.其中,绝大多数缺陷问题都是由代码的错误编写导致的,在软件缺陷修复过程中开发维护人员需要花费大量的时间定位并修改缺陷代码.针对这个问题,对缺陷报告以及对应的项目变更信息进行整合,根据代码抽象语法树结构信息计算代码块与缺陷报告之间的关系,从而构建缺陷-代码知识库.在此知识库的基础上构建面向缺陷定位的代码搜索引擎,以向用户推荐更全面的缺陷定位信息,包括相似缺陷报告、相关缺陷代码文件以及缺陷代码块,从而帮助开发和维护人员及时有效地定位缺陷.实验结
软件系统中通常存在一些在拓扑结构上处于核心位置的关键类,这些类上的缺陷往往会给系统带来极大的安全隐患,识别关键类对工程师理解或维护一个软件系统至关重要.针对这一问题,提出一种基于图神经网络的关键类识别方法.首先利用复杂网络理论,将软件系统抽象为软件网络;其次结合无监督网络节点嵌入学习以及邻域聚合的方式,构建一个编码-解码(encoder-decoder)框架,提取软件系统中类节点的表征向量;最后利用Pairwise排序学习实现网络中节点的重要性排序,从而实现软件系统中关键类的识别.为验证所提方法的有效性,
属性网络不仅具有复杂的拓扑结构,其节点还包含丰富的属性信息.属性网络表示学习方法同时提取网络拓扑结构和节点的属性信息来学习大型属性网络的低维向量表示,在节点分类、链路预测和社区识别等网络分析技术方面具有非常重要和广泛的应用.文中首先根据属性网络的拓扑结构得到网络的结构嵌入向量;接着通过全局注意力机制来学习相邻节点的属性信息,先用卷积神经网络对节点的属性信息作卷积操作得到隐藏向量,再对卷积的隐藏向量生成全局注意力的权重向量和相关性矩阵,进而得到节点的属性嵌入向量;最后将结构嵌入向量和属性嵌入向量连接得到同时
大数据时代,由于信息过载,用户很难从海量数据中寻找出感兴趣的内容,个性化推荐系统的诞生极好地解决了这个问题.协同过滤算法被广泛应用于个性化推荐领域,但由于模型的限制,推荐效果未能得到进一步提升.现有的基于协同过滤模型的改进方法大多都是通过引入表示学习方法来得到更好的用户表示向量和项目表示向量,或通过改进用户项目匹配函数来提升推荐能力,但此类工作都致力于从单个交互提取用户-项目交互信息.文中提出了一种多空间交互协同过滤推荐算法,将用户向量和项目向量映射到多空间,从多角度做用户-项目交互,使用两层注意力机制聚