论文部分内容阅读
提出一种基于云模型的入侵杂草优化算法,根据杂草适应度值的大小将杂草种群分为优良子群、普通子群和较差子群。通过CR调整标准差,不同的子群采取不同的标准差进行扩散,优良子群采用较小的标准差进行精细搜索,普通子群利用云模型的随机性和模糊性动态调整标准差,进行自适应搜索,较差子群采用较大的标准差进行全局搜索。由此加快了算法的收敛速度,较好地平衡了全局搜索能力和局部搜索能力,并且在一定程度上避免了算法陷入局部最优。对7个测试函数进行仿真实验,结果表明,该算法具有较高的寻优精度和更快的收敛速度。