论文部分内容阅读
为了研究LSP的稀疏表示方法,高效量化LSP参数,基于字典学习对LSP参数进行稀疏表示,并采用MOD和K—SVD算法训练参数字典,以平均谱失真和均方根误差为准则,通过仿真实验分析了算法的有效性,得出了字典学习时的稀疏度、原子个数等关键参数选取的原则。对比训练和测试LSP参数均方根误差性能曲线发现:随着稀疏度的增加,LSP参数字典外推能力增强,对训练集外参数稀疏表示性能恶化逐步减弱。