论文部分内容阅读
研究智能交通控制网络的短时交通流准确预测问题。为保证智能交通控制的效率,短时间内采集交通流信息并作为预测参数快速完成交通流的预测,然而短时间内采集到的交通流数据有限,数据间的相关性不明显,传统的交通流预测方法针对短时采集的相关性不明显的数据进行预测,存在预测准确度不高的问题。为解决上述难题,提出采用多维标度法的短时交通流预测方法。利用多维标度法处理采集到的短时交通流数据得到数据间的潜在相关性,避免因短时数据间相关性不明显而造成预测准确度不高的问题,然后根据数据相关性建立交通流预测模型,按照预测算法流