论文部分内容阅读
本文利用非线性理论,在各组成波空间特征尺度可分离情况下,推广了Longuet-Higgins(1994)最新结果。并在某些可允许条件范围内,利用n次骑波能量方程,给出了n-1次骑波关于n次骑波扰动失稳条件。由失稳条件及破碎波动力机制,分析了二维表面波破碎面的拓扑结构,并给出了计算该破碎面分形雏数表达式。最后,通过一具体实例,来进一步解释破碎面分形拓扑结构。
In this paper, using the nonlinear theory, the newest results of Longuet-Higgins (1994) are generalized under the separability of the characteristic scale of each component wave space. In some allowable conditions, the n-th cycle riding wave equation is used to describe n-1 cycle riding wave disturbance n-cycle disturbance instability conditions. The topological structure of two-dimensional surface wave broken surface is analyzed from the instability condition and the breaking wave force mechanism, and the expression of fractal dimension of the fractured surface is given. Finally, through a concrete example, we can further explain the fractal surface fractal topology.