论文部分内容阅读
This paper demonstrates an intrinsic modulation of the cutoff wavelength in the spectra for solar selective absorbing coating based on high-entropy films. The (NiCuCrFeSi)N ((NCCFS)N) films were deposited by a magnetron sputtering system. Rutherford backscattering spectroscopy analysis confirms the uniform composition and good homogeneity of these high-entropy films. The real and imaginary parts of the permittivity for the (NCCFS)N material are calculated on the basis of the reflectance spectral fitting results. A redshift cutoff wavelength of the reflectance spectrum with increasing nitrogen gas flow rate exists because of the different levels of dispersion when changing nitrogen con-tent. To realize significant solar absorption, the film surface was reconstituted to match its impedance with air by designing a pyramid nano-structure metasurface. Compared with the absorptance of the as-deposited films, the designed metasurface obtains a significant improvement in solar absorption with the absorptance increasing from 0.74 to 0.99. The metasurfaces also show low mid-infrared emissions with thermal emit-tance that can be as low as 0.06. These results demonstrate a new idea in the design of solar selective absorbing surface with controllable ab-sorptance and low infrared emission for high-efficiency photo-thermal conversion.