论文部分内容阅读
平面几何中,在给定条件下,求关于几何图形中的某个确定的几何量(如长度、角度、面积等)的最大值或最小值问题,称为最值问题.探求最值问题的一般方法有两种:(1)几何法:从运动中观察变化规律,应用几何中的不等量性质、定理;(2)代数法:着眼于揭示问题中变化元素的代数关系,通过构造一元二次方程和二次函数等代数方法或者利用三角方法来求最值.本文主要例举探讨最值问题的一些几何解决方法.具体而言,应用几何性质:
In plane geometry, the problem of finding the maximum or minimum of a given geometric quantity (such as length, angle, area, etc.) in a given geometry under a given condition is called the most value problem. There are two general methods: (1) Geometry: observing the law of variation from motion, applying the inequality of geometry, theorem; (2) Algebraic method: Focusing on revealing the algebraic relationship among the changing elements in the problem, Quadratic equation and quadratic function algebraic methods or the use of trigonometric method to find the most value.This paper mainly illustrates some of the geometric solution to the most value problems.In particular, the application of geometric properties: