基于特征选择与残差融合的肝肿瘤分割模型

来源 :中国图象图形学报 | 被引量 : 0次 | 上传用户:chenzenghua
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的 高效的肝肿瘤计算机断层扫描(computed tomography,CT)图像自动分割方法是临床实践的迫切需求,但由于肝肿瘤边界不清晰、体积相对较小且位置无规律,要求分割模型能够细致准确地发掘类间差异.对此,本文提出一种基于特征选择与残差融合的2D肝肿瘤分割模型,提高了2D模型在肝肿瘤分割任务中的表现.方法 该模型通过注意力机制对U-Net瓶颈特征及跳跃链接进行优化,为符合肝肿瘤分割任务特点优化传统注意力模块进,提出以全局特征压缩操作(global feature squeeze,GFS)为基础的瓶颈特征选择模块,即全局特征选择模块(fea-ture selection module,FS)和邻近特征选择模块(neighbor feature selection module,NFS).跳跃链接先通过空间注意力模块(spatial attention module,SAM)进行特征重标定,再通过空间特征残差融合(spatial feature residual fusion module,SFRF)模块解决前后空间特征的语义不匹配问题,在保持低复杂度的同时使特征高效表达.结果 在LiTS(liver tumor segmentation)公开数据集上进行组件消融测试并与当前方法进行对比测试,在肝脏及肝肿瘤分割任务中的平均Dice得分分别为96.2%和68.4%,与部分2.5D和3D模型的效果相当,比当前最佳的2D肝肿瘤分割模型平均Dice得分高0.8%.结论 提出的FSF-U-Net(feature selection and residual fusion U-Net)模型通过改进的注意力机制与优化U-Net模型结构的方法,使2D肝肿瘤分割的结果更加准确.
其他文献
目的 针对常见方法对脑胶质瘤的肿瘤分割和生存预测需要单独建模的问题,提出一种带有变分自编码器(variational auto-encoder,VAE)分支的两阶段级联U-Net算法,旨在分割肿瘤的同时提取鲁棒的特征预测患者生存期,有助于患者的精准治疗.方法 提出的两阶段级联U-Net网络,第1阶段实现初步粗分割,第2阶段实现精细化分割.此外,在第2阶段添加变分自编码器分支以提取更加鲁棒的特征并提高模型泛化性.其中,变分自编码器分支获取的特征被送入随机森林算法以进行生存期预测.另外,在两个阶段的解码器部分
目的 磁共振成像(magnetic resonance imaging,MRI)作为一种非侵入性的软组织对比成像方式,可以提供有关脑肿瘤的形状、大小和位置等有价值的信息,是用于脑肿瘤患者检查的主要方法,在脑肿瘤分割任务中发挥着重要作用.由于脑肿瘤本身复杂多变的形态、模糊的边界、低对比度以及样本梯度复杂等问题,导致高精度脑肿瘤MRI图像分割非常具有挑战性,目前主要依靠专业医师手动分割,费时且可重复性差.对此,本文提出一种基于U-Net的改进模型,即CSPU-Net(cross stage partial U
目的 影像学医师通常通过观察乳腺B型超声(brightness-mode ultrasound)肿瘤区域进行良恶性分析,针对难以辨别的病例则融合其对应的超声造影(contrast-enhanced ultrasound,CEUS)特征进一步判别.由于超声图像灰度值范围变化小、良恶性表现重叠,特征提取模型如果不能关注到病灶区域将导致分类错误.为增强网络模型对重点区域的分析,本文提出一种基于病灶区域引导的注意力机制,同时融合双模态数据,实现乳腺超声良恶性的精准判别.方法 通过对比实验,选取一个适合超声图像特征
目的 股骨粗隆间骨折是老年人最常见的骨折,不同类型的骨折需要不同的治疗方法.计算机图像识别技术可以辅助医生提高诊断准确率.传统的图像特征提取和机器学习方法,无法实现细粒度、高精度的分类,且少见针对3维图像的骨折分型方法.基于深度学习方法,通常需要大量的样本参与训练才能得出较好的分型性能.针对上述问题,本文提出一种面向小样本、多分类的骨折分型方法.方法 将原始CT(computed tomography)分层扫描图像进行3维重建,获取不同视角下的2维图像信息,利用添加注意力机制的多视角深度学习网络融合组合特
生成对抗式网络(generative adversarial network,GAN)由负责学习数据分布的生成器和负责鉴别样本真伪的判别器构成,二者在相互对抗过程中互相学习逐渐变强.该网络模型使深度学习方法可以自动学习损失函数,减少了对专家知识的依赖,已经广泛应用于自然图像处理领域,对解决医学影像处理的相关瓶颈问题亦具有巨大应用前景.本文旨在找到生成对抗式网络与医学影像领域面临挑战的结合点,通过分析已有工作对未来研究方向进行展望,为该领域研究提供参考.1)阐述了生成对抗式网络的基本原理,从任务拆分、条件约
目的 在骨龄智能评估研究中,如何准确地提取手腕参照骨的兴趣区域(region of interest,ROI)是保证骨龄精确评估的关键.基于传统深度学习的方法用于手腕骨ROI提取,存在个别参照骨漏判、误判等情况,导致平均提取准确率较低.本文结合目标检测强大的定位和识别能力,以准确提取所有手腕骨ROI为目的,提出了一种参照骨自动匹配与修正方法.方法 针对不同参照骨形状、位置等特征表现出的规律性和关联性,本文采集了大量不同性别、不同年龄段的人手腕图谱作为参照骨样本匹配,然后分多个阶段提取参照骨ROI:1)基于
根据相关试验结果可知,需要对功能系统进行优化,以实现功能最大化的目标.该文首次提出把系统优化研究成果与计算机神经网络技术相结合,派生出系统优化免试验方法,即计算机模拟试验法.它可以降低科技实践的成本,从而有效促进科技实践活动多、快、好且省地高效运行.当然,作为一项新技术,它也有待在众多领域科技实践中接受进一步检验,以达到更加成熟的目的.为进一步提高系统优化效率,必须将它升级为全自动运行的模式.
目的 肺结节检测在低剂量肺部计算机断层扫描(computed tomography,CT)筛查肺癌中具有重要意义.但由于结节大小、形状和密度的变化十分复杂,导致难以在低假阳性率下保证高的灵敏度,这限制了深度学习算法在常规临床实践中的肺结节自动诊断,建立具有良好结节检测性能的深度学习模型仍然是一个挑战.针对此问题,本文提出了一种基于3D ReSidual U(3D RSU)块的嵌套U结构的肺结节检测框架.方法 3D RSU块通过混合不同大小的感受场获得多尺度特征来丰富特征信息.而嵌套U结构允许网络获得更大分
目的 新型冠状病毒肺炎(corona virus disease 2019,COVID-19)患者肺部计算机断层扫描(computed tomo-graphy,CT)图像具有明显的病变特征,快速而准确地从患者肺部CT图像中分割出病灶部位,对COVID-19患者快速诊断和监护具有重要意义.COVID-19肺炎病灶区域复杂多变,现有方法分割精度不高,且对假阴性的关注不够,导致分割结果往往具有较高的特异度,但灵敏度却很低.方法 本文提出了一个基于深度学习的多尺度编解码网络(MED-Net(multiscale
计算机断层扫描(computed tomography,CT)技术能为新冠肺炎(corona virus disease 2019,COVID-19)和肺癌等肺部疾病的诊断与治疗提供更全面的信息,但是由于肺部疾病的类型多样且复杂,使得对肺CT图像进行高质量的肺病变区域分割成为计算机辅助诊断的重难点问题.为了对肺CT图像的肺及肺病变区域分割方法的现状进行全面研究,本文综述了近年国内外发表的相关文献:对基于区域和活动轮廓的肺CT图像传统分割方法的优缺点进行比较与总结,传统的肺CT图像分割方法因其实现原理简单且