论文部分内容阅读
针对萨道夫斯基公式中参数K,α的确定具有模糊性及随机性,首先,利用非对称三角模糊系数式表示参数K,α最可能取值及其可能性分布,再通过非对称三角模糊数在特定截集水平下的宽度之和与测试值和计算分析最可能取值加权系数的方差作为目标函数进行模糊优化分析,同时通过“3σ”原则合理地确定非对称三角模糊数截集水平h,从而为爆破振动质点峰值振动速度的预测及爆破方案设计的优化提供了一种新的方法,该方法不仅有效减少较大离散性数据对分析结果的影响,又真实反映了实际工程中参数K,α取值的不确定性特征。通过与最小二乘法对实际工程中测试数据的计算分析对比,表明该方法较符合工程实际。
According to the determination of the parameters K, α in the Sadofsky formula, the fuzziness and randomness are determined. First, the most probable values of the parameters K and α and their probability distributions are represented by the asymmetric triangular fuzzy coefficient formula, and then by the asymmetric triangular fuzzy The sum of the width at the specific cut-off level, the test value and the variance of the most probable weighting coefficient of the calculation and analysis as the objective function to carry out the fuzzy optimization analysis, and at the same time, the asymmetric triangular fuzzy number cutoff Set the level h, thus providing a new method for the prediction of the peak vibration velocity of blasting vibration particles and the optimization of blasting scheme design. This method not only effectively reduces the influence of large discrete data on the analysis results, but also truly reflects the actual project In the parameters K, α value of the uncertainty characteristics. Compared with the least squares method to calculate and analyze the test data in the actual project, it shows that the method is more in line with the engineering practice.