论文部分内容阅读
在解决数函数问题时,通过对问题的已知条件和结论作深入恰当的分析,利用函数性质或利用赋值法(特殊值法)、代换法、变形法去构建函数模型,筑起解决问题的桥梁,可以使得问题简明快捷地得以解决.一、函数性质解题法函数的性质是研究函数问题的核心,一定要注意:1对性质的理解;2对性质的灵活运用;3特别要注意函数的周期性和函数图象的对称性.函数的周期性:f(x+a)=f(x)说明函数f(x)的周期T=a
When solving the problem of the number function, through the deep and proper analysis of the known conditions and conclusions of the problem, the function model is constructed by using the function property or the assignment method (special value method), the substitution method and the deformation method, so as to solve the problem Of the bridge, you can make the problem be solved quickly and concisely.First, the nature of the function solution The nature of the function method is the core of the study of function problems, we must pay attention to: 1 the nature of understanding; 2 the nature of the flexible use of 3 with special attention The periodicity of the function and the symmetry of the function image. The periodicity of the function: f (x + a) = f (x)