论文部分内容阅读
Considering that there are abundant coherent soliton excitations in high dimensions, we reveal a novel phenomenon that the localized excitations possess chaotic and fractal behaviour in some (2+1)-dimensional soliton systems. To clarify the interesting phenomenon, we take the generalized (2+1)-dimensional Nizhnik-NovikovVesselov system as a concrete example. A quite general variable separation solutions of this system is derived via a variable separation approach first, then some new excitations like chaos and fractals are derived by introducing some types of lower-dimensional chaotic and fractal pattes.