基于深度前编码卷积网络的汉越语音翻译方法

来源 :小型微型计算机系统 | 被引量 : 0次 | 上传用户:lanyao88
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
语音翻译是将源语言语音翻译为目标语言文本的过程.传统序列到序列模型应用到语音翻译领域时,模型对于序列长度较为敏感,编码端特征提取和局部依赖建模压力较大.针对这一问题,本文基于Transformer网络构建语音翻译模型,使用深度卷积网络对音频频谱特征进行前编码处理,通过对音频序列进行下采样,对音频频谱中的时频信息进行局部依赖建模和深层特征提取,缓解编码器的建模压力,实现了汉越双语的语音到文本互译.实验结果表明,提出方法取得很好效果,相比基准系统获得了约19%的性能提升.
其他文献
粉末材料的微波耗散机理不同于块状材料,非磁性的金属与氧化物混合粉末展现出对微波磁场较强的吸收特性.本文针对金属与氧化物混合粉末的电导率和微波磁吸收特性开展研究,并
无人机是一种典型的依靠通信和控制系统实现自主飞行的信息物理系统,在安全性和可靠性方面引起了广泛的关注.本文考虑无人机传感器易受网络攻击问题,充分利用数据的时间相关性,提出了针对无人机传感器数据的异常检测模型.首先采用LSTM神经网络对传感器数据进行预测,再将预测值与实际值做差,并将差值输入LSTM分类器进行训练得到包含正样本的超平面,最后计算测试数据到超平面的距离函数值,根据其正负判定异常与否.并