论文部分内容阅读
针对旋转机械进行故障诊断时,由于邻近机械的干扰,往往无法得到真实的的故障信息以及诊断速度慢的问题,本文提出了一种基于独立分量分析(Independent Component A-nalysis,ICA)和概率神经网络(Probabilistic Neural Network,PNN))的故障诊断方法,采用快速独立分量分析(FastICA)进行特征提取,PNN实现状态识别.通过仿真与实验加以证明,并与经典的前向多层神经网络(BP网络)的故障分类进行对比,结果表明PNN的准确率可以达到100%,而BP网络只有