论文部分内容阅读
针对如何提高代码评审效率的问题,本文提出了BPR-CR2评审者推荐模型.该模型中结合了评审者与代码Pull请求的专业关联性、与Pull请求提出者的社交关联性、与Pull请求的代码路径相关性以及评审者的积极性因素,基于贝叶斯个性化排序的思想学习每个评审者在进行Pull请求选择时的权重偏好,从而能够对每个Pull请求推荐评审者.在Github平台的5个流行项目的数据集上进行了测试,与目前5个典型算法相比,BPR-CR2的性能优于其他算法.