论文部分内容阅读
为了提高肌电假手模式识别和速度比例控制准确率,提出一种基于肌电复杂度特征和支持向量机的比例控制假手方法.提取能够表征动作复杂度的Lempel-Ziv复杂度和平均功率作为表面肌电特征,输入支持向量机,对握拳、伸拳、腕伸及腕屈四个动作进行识别,同时通过三次样条插值方法对动作过程的肌电平均功率和动作速度进行拟合,实现假手的速度比例控制.实验表明:该方法取得了94.18%的动作模式识别率和较小的比例控制误差.