论文部分内容阅读
在对风电机组的运行特性和齿轮箱温升机理的研究基础上,提出一种基于无迹卡尔曼方法(UKF)的风电机组故障诊断策略.该模型实现了对齿轮箱温升的有效预测,并在风电机组故障的情况下实现有效检测.对不同故障类型的诊断测试结果可显示机组局部故障对风电机组各关键参量的动态影响,同时表明UKF方法对不同故障条件下输入参数的变化有特殊响应.因而根据风电机组不同的故障模式,通过有针对性的算法输入参量设计可实现风电机组多种故障的有效诊断,为分析SCADA数据隐含的故障信息提供了一种有效手段.