论文部分内容阅读
本研究计划之目的,系探讨沃斯田铁面心立方结构之铁-9铝-30锰-1碳-0.5矽合金,两种试样时效热处理后内部微析出物显微结构与超顺磁性质之关系,两种试样分别为固溶油冷与固溶油冷锻应变20%~50%,再同时於823K持温140天时效处理。本研究结果显示:此种合金固溶油冷经冷锻应变再时效析出处理,可以显著地改善此种合金内部微结构磁性相析出物之导磁率与饱和磁化强度,其原因系归因於沃斯田铁相面心立方结构之铁铝锰碳合金,固溶处理,再经20%~50%之冷锻加工应变(变形)后,则在{111}八面体原子最密集结晶面之<110>原子最密集向量上,会引生叠差与可动差排密度量之增加,进而在沃斯田铁基地内部,增加叠差能与差排之相互作用,并促成差排核心铁/锰-碳偶合(Fe/Mn-C couples)的碳原子重新取向,所以应变与时效析出处理,能提升此种材料内部差排和其相关溶质原子之扩散与物理化学反应,进而提升时效处理后,合金内部之微结构磁性相析出物在非磁性基地的时效析出效果,并改善时效处理后,试样内部之微结构磁性相析出物之导磁率与饱和磁化强度。 X-ray绕射实验与穿透式电子显微镜(TEM)研究证实:微结构磁性相析出物系源自於层状k-相的相变能反应所产生之产物,而微结构磁性相析出物(B2+D0_3)与k-相之结晶方向关系为[112]_(B2+D0_3)+//[133]k;[300]_(B2+D0_3)//[400]_(B2+D0_3)//[011]k,及微结构磁性相析出物α′-Mn与B2之结晶方向关系为[001]_(α′-Mn)//[123]B_2。
The purpose of this research project is to discuss the iron-9 aluminum-30 manganese-1 carbon-0.5 silicon alloy of the austenite steel face-centered cubic structure. The microstructure of the micro-precipitates and the superparamagnetic Nature of the relationship between the two samples were solid-solution oil-cold and solid-solution cold forging strain of 20% to 50%, then simultaneously at 803K temperature 140 days aging. The results show that the cold-forging strain re-precipitation of this solid solution oil can significantly improve the magnetic permeability and saturation magnetization of the magnetic phase precipitates in the microstructure of the alloy, After the iron-manganese-carbon alloy with iron-carbon face-centered cubic structure solid-solution treatment after 20% -50% of cold forging processing, the alloy with the most dense crystal plane of {111} 110> atomic dense vector, it will lead to overlay and move the difference between the density of the increase in density, and then in the interior of the base of the austenite steel field to increase the differential between the differential and the poor row of the interaction and to promote bad row core iron / Manganese-carbon couple (Fe / Mn-C couples) carbon atoms reorientation, so the strain and aging precipitation treatment, can enhance the material within the row and its associated solute diffusion and physicochemical reactions, thereby enhancing the aging treatment , The microstructure of the microstructure within the alloy precipitated in the non-magnetic base of the aging effect of precipitation, and improve the aging treatment, the microstructure of the sample within the microstructure of magnetic precipitates permeability and saturation magnetization. X-ray diffraction experiments and transmission electron microscopy (TEM) studies confirm that the microstructural magnetic phase precipitates originate from the products produced by the phase transformation energy reaction of the layered k-phase, whereas the microstructure magnetic phase precipitates (B2 + D0_3) and the crystallographic direction of the k-phase is [112] _ (B2 + D0_3) + // [133] k; [300] _ (B2 + D0_3) // [400] _ (B2 + D0_3 ) // [011] k, and the crystallographic orientation of the microstructure magnetic phase α’-Mn and B2 is [001] _ (α’-Mn) // [123] B_2.