论文部分内容阅读
随着深度学习网络的不断发展,卷积神经网络在图像识别与处理领域的正确率已达到甚至超越人类水平。但是,越来越复杂的网络结构导致庞大的计算模型体积和计算量,不利于模型的移植利用。基于此,分别介绍了网络压缩加速的典型方法并进行比较,在保证算法准确率损失最少的前提下,尽可能使算法具有可移植性,充分体现卷积神经网络算法的应用价值。