论文部分内容阅读
应用齐次Markov链仔细分析了标准遗传算法(SGA)趋近于稳态的过程,给出其稳态分配的 具体表示形式;同时得到了更广泛和严格意义上的与SGA控制参数相联系的到达稳态的速度估计。 其结果对于其他全局收敛GA的收敛性和收敛速度研究都有借鉴意义。
The homogeneous genetic algorithm (SGA) is approached to the steady-state process using the homogeneous Markov chain, and the exact representation of its steady-state distribution is given. At the same time, a more extensive and rigorous relationship with the SGA control parameters Estimated speed of reaching steady state. The results of this paper are of great value for the research on the convergence and convergence speed of other global convergence GA.