融合各向异性扩散信息的图像分割

来源 :中国图象图形学报 | 被引量 : 0次 | 上传用户:yanyiblue
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的图像因各种因素的影响存在一定程度的噪声,而噪声会在图像分割时影响待分割目标的边缘识别,导致分割结果难以达到理想状态。针对以上问题,在距离规则化水平集(DRLSE)演化模型的基础上,提出一种将各向异性扩散散度场信息融合到DRLSE模型中的新模型。方法将水平集函数初始化为分段常数表达式,设定演化方程中的参数和水平集函数演化过程中的迭代时间步长Δt。随后将常值权系数α替换为融合各项异性扩散散度场信息的变权系数α(I),对水平集函数的演化方程进行迭代演化,直至收敛到目标边缘。输出最终演化轮廓。结果对选自
其他文献
目的图像的风格迁移是近年来机器视觉领域的研究热点之一。针对传统基于卷积神经网络(CNN)的图像风格迁移方法得到的结果图像存在风格纹理不均匀、噪声增强及迭代时间长等问题,本文在CNN框架下提出了一种基于相关对齐的总变分图像风格迁移新模型。方法在详细地分析了传统风格迁移方法的基础上,新模型引入了基于相关对齐的风格纹理提取方法,通过最小化损失函数,使得风格信息更加均匀地分布在结果图像中。通过分析比较CN
Organic-inorganic hybrid perovskite solar cells have generated wide interest due to the rapid development of their photovoltaic conversion efficiencies.However,
目的基于超像素分割的显著物体检测模型在很多公开数据集上表现优异,但在实际场景应用时,超像素分割的数量和大小难以自适应图像和目标大小的变化,从而使性能下降,且分割过多会耗时过大。为解决这一问题,本文提出基于布尔图和灰度稀缺性的小目标显著性检测方法。方法利用布尔图的思想,提取图像中较为突出的闭合区域,根据闭合区域的大小赋予其显著值,形成一幅显著图;利用灰度稀缺性,为图像中的稀缺灰度值赋予高显著值,抑制
目的 随着城市交通拥堵问题的日益严重,建立有效的道路拥堵可视化系统,对智慧城市建设起着重要作用.针对目前基于车辆密度分析法、车速判定法、行驶时间判定法等模式单一,可