论文部分内容阅读
目的提出一种基于图像分块和径向基函数(RBF)神经网络的人脸特征提取与识别方法,解决人脸识别中的高维、小样本问题.方法采用人脸图像的分块处理、奇异值分解压缩算法,降低特征维数,有效地解决了存储和传输中的数据压缩问题,运用基于聚类方法的RBF神经网络分类器进行人脸分类识别.结果通过实验和数据分析表明,该方法在人脸骨骼特征明显时具有较高的识别率,与基于整体人脸图像的识别效果相比,识别率提高了3%.结论笔者提出的识别方法具有良好的学习效率和识别精度品质指标.